コンピュータメモリを1000倍高速化する研究
磁界記録方式よりも高効率な
テラヘルツ波で書き換えを可能に
未来のコンピューターは今よりも1000倍ほど速く動作するようになるかもしれません。
欧露の研究チームがNatureに発表した研究によると、"T-Ray"と呼ばれるテラヘルツ波を利用することで、不揮発性メモリーセルの書き換え高速化が可能になるとのこと。
テラヘルツ波は電磁波と赤外線の間の波長をもつ一種の放射線。放射線と言っても人体への影響はないとされ、身近な使用例としては、空港などで使われるボディスキャナーがあります。パッシブ式テラヘルツ波スキャナーはあらゆる物質から発せられるテラヘルツ波を検知し、たとえば衣服の下に爆薬や武器、密輸品などを隠し持っていないかを検出することが可能です。
チームがNatureに発表した研究結果によると、このテラヘルツ波を使えば、磁化によって電源がなくとも情報を保持できる高速なメモリー(おそらくスピントロニクスメモリー素子)の動作を、電磁波を使った場合の約1000倍にまで高速化できるとのことです。
反強磁性体ツリウム・オルトフェライト(TmFeO₃)を使った実験では、従来使われてきた電磁波に比べ10倍の磁界を発生させ、より高速な動作に対応できることが確認されました。
研究では、まだ実際のメモリー素子としての動作実験には至っていません。しかし研究が進み実用化に至れば、いつの日か筐体の中で"T-Ray"が飛び交う超高速PCなども実現するのかもしれません。
Nonlinear spin control by terahertz-driven anisotropy fields
Future information technologies, such as ultrafast data recording,
quantum computation or spintronics, call for ever faster spin control by
light
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations
5, 11.
Here, we explore a novel electric dipole-mediated mechanism of
nonlinear terahertz-spin coupling that is much stronger than linear
Zeeman coupling to the terahertz magnetic field
5, 10. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO
3),
we demonstrate that resonant terahertz pumping of electronic orbital
transitions modifies the magnetic anisotropy for ordered Fe
3+
spins and triggers large-amplitude coherent spin oscillations. This
mechanism is inherently nonlinear, it can be tailored by spectral
shaping of the terahertz waveforms and its efficiency outperforms the
Zeeman torque by an order of magnitude. Because orbital states govern
the magnetic anisotropy in all transition-metal oxides, the demonstrated
control scheme is expected to be applicable to many magnetic materials.
|
a, Spin and lattice structure of TmFeO3 shown in the Γ24 phase. Green/blue spheres: Tm3+/Fe3+ ions. Oxygen atoms are not shown, for clarity. The iron spins (blue arrows) form two antiferromagnetically coupled sublattices M1 and M2, which are mutually canted by the Dzyaloshinskii–Moriya interaction, giving rise to a weak ferromagnetic moment F = M1 + M2. In the Γ24 phase (that is, for 80 K < T < 90 K), the antiferromagnetic vector G = M1 − M2 encloses a finite angle 0° < θ0 < 90° with the x axis. b, Spin reorientation phase transitions. In the Γ2 phase (T < 80 K), the antiferromagnetic vector G is aligned along the crystallographic z axis, whereas it lies along the x axis above T = 90 K (Γ4 phase). In the Γ24 phase, G rotates continuously in the x–z plane. c, The crystal field splits the ground state 3H6 of the rare-earth Tm3+
ions into several energy levels with an energy spacing of ∼1–10 meV
(schematic level scheme). The corresponding orbital wavefunctions set
the magnetic anisotropy for the iron spins in thermal equilibrium (upper
panel). Ultrafast transitions between these energy levels resonantly
induced by terahertz pulses should exert an abrupt torque on the spins
and act as an efficient trigger for coherent spin dynamics (lower
panel). The small canting angle is not shown, for clarity. |
|
a, Electro-optically detected terahertz transients used to excite magnon/Tm3+ resonances in TmFeO3. b, Amplitude spectrum of the waveform shown in a. Arrows indicate the frequencies of the magnon/Tm3+ resonances. c,
Schematic of the experiment. The terahertz pump (red) and near-infrared
probe pulses (NIR, blue) are collinearly focused onto the TmFeO3 sample with variable delay time t. Using a λ/2 plate, a Wollaston prism and two balanced photodiodes, terahertz-induced magnetic dynamics in TmFeO3 are measured by polarization rotation of the probe pulses. d, Resonance frequencies of the q-FM (red circles) and q-AFM (blue triangles) modes in dependence on sample temperature T. Black curves are guides to the eye. |